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Abstract. We present NEFOS (NEsted FOrest of balanced treeS), a
new cache-aware indexing scheme that supports insertions and deletions
in O(1) worst-case block transfers for rebalancing operations (given and
update position) and searching in O(log

B
log n) expected block transfers,

(B= disk block size and n= number of stored elements). The expected
search bound holds with high probability for any (unknown) realistic in-
put distribution. Our expected search bound constitutes an improvement
over the O(log

B
log n) expected bound for search achieved by the ISB-

tree (Interpolation Search B-tree), since the latter holds with high prob-
ability for the class of smooth only input distributions. We define any
unknown distribution as realistic if the smoothness doesn’t appear in the
whole data set, still it may appear locally in small spatial neighborhoods.
This holds for a variety of real-life non-smooth distributions like skew,
zipfian, powlaw, beta e.t.c.. The latter is also verified by an accompany-
ing experimental study. Moreover, NEFOS is a B-parametrized concrete
structure, which works for both I/O and RAM model, without any kind
of transformation or adaptation. Also, it is the first time an expected sub-
logarithmic bound for search operation was achieved for a broad family
of non-smooth input distributions.
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1 Introduction

More than three decades after its invention, B-tree [5] and its variants remain
the ubiquitous external memory data structure for indexing and organizing large
data sets with numerous applications, especially in database systems. Its pop-
ularity is mainly due to the O(logB n) worst-case complexity (block transfers)
for search and update operations. The most heavily used application is the effi-
cient answering of one-dimensional range search queries using O(logB n+r) block
transfers, where R = rB is the number of elements reported, B is the block-size
and n the number of element. In this paper, we consider one of the most known
and widely used such models, namely the two-level memory hierarchy model in-
troduced in [2, 25]. In this model, the memory hierarchy consists of an internal
(main) memory and an arbitrarily large external memory (disk) partitioned into



blocks of size B. The data from the external to the main memory and vice versa
are transferred in blocks (one block at a time).

A large number of variants of the B-tree have been proposed since its appear-
ance in order to improve its performance in practice for various applications —
see the excellent survey by Vitter [24] for an extended accounting of these and
other variants and their applications — to make it parallel for use in multi-disk
environments [21], to tune it for concurrency and recovery purposes [14, 22], to
extend it to cover other than the original field [9], etc. Regarding the update op-
eration, it should be noted that an update operation consists of three consecutive
phases: a search phase (to locate the place of the update), an element-updating
phase (to insert the new element, or delete the located element), and a rebalancing
phase (to restore the B-tree structure). Excluding the first phase (search opera-
tion), the dominating phase of an update operation is the rebalancing one, since
the element-updating phase takes typically O(1) block transfers (and/or time).
In the case of B-tree and its variants, the rebalancing phase requires Θ(logB n)
block transfers in the worst-case. This implies that the update operation takes
Θ(logB n) block transfers, even in the case where the update position (block
within which the update will take place) is given.

ISB-tree (Interpolation Search B-tree) presented in [12], supports search op-
erations in O(logB log n) expected block transfers with high probability (w.h.p.)
for a large class of input distributions (including both uniform and non-uniform
classes) described below, and update operations in O(1) block transfers, pro-
vided that the update position is given. The search bound implies that a one-
dimensional range search query can be supported in O(logB log n + r) expected
block transfers with high probability. The worst-case block transfers for the search
operation are O(logB n).

The expected search bound was achieved by considering a rather general
scenario of µ-random insertions and random deletions, where µ is a so-called
smooth probability density [3, 19]. An insertion is µ-random if the key to be
inserted is drawn randomly with density function µ; a deletion is random if every
key present in the data structure is equally likely to be deleted [13]. Informally, a
distribution defined over an interval I is smooth if the probability density over any
subinterval of I does not exceed a specific bound, however small this subinterval
is (i.e., the distribution does not contain sharp peaks). Smooth distributions are
a superset of uniform, bounded, and several non-uniform distributions (e.g., the
class of regular distributions introduced by Willard [26]).

In this paper, we present NEFOS (NEsted FOrest of balanced treeS), a
new cache-aware indexing scheme that supports insertions and deletions in O(1)
worst-case block transfers for rebalancing operations (provided that the update
position is given) and searching in O(logB log n) expected block transfers, where
B represents the disk block size and n denotes the number of stored elements.
The expected search bound holds with high probability for any (unknown) real-

istic input distribution. Our expected search bound constitutes an improvement
over the O(logB log n) expected bound for search achieved by the ISB-tree (In-
terpolation Search B-tree), since the latter holds with high probability for the
class of smooth only input distributions. Note here that realistic distributions



are a superset of smooth distributions. Generally speaking, in (f1, f2)-smooth
distributions, f1 measures how fine is the partitioning of an arbitrary subinter-
val as well as f2 measures the sparseness of this subinterval. In this context,
any probability distribution is (f1, Θ(n))-smooth. For smooth class of densities,
f2 = Θ(nδ), where 0 < δ < 1. We define any unknown distribution as realistic if
there is at least one subinterval of Θ(n) sparseness and there are at least Θ(nδ)
consecutive subintervals of Θ(n1−δ) sparseness, where 0 < δ < 1. This holds for a
variety of real-life non-smooth distributions like skew, zipfian, powlaw, beta e.t.c.,
where the smoothness property appears locally in small spatial neighborhoods.
The latter is also verified by an accompanying experimental study. Moreover,
NEFOS is a B-parametrized concrete structure, which works for both I/O (ar-
bitrary B) and RAM (B=2) model, without any transformation or adaptation.
Also, it is the first time an expected sub-logarithmic bound for search operation
was achieved for a broad family of non-smooth input distributions.

External data structures related to our approach are those based on hashing
[18, 24]. The main representatives of external memory hashing methods include:
extendible hashing [8], linear hashing [16], and external perfect hashing [10].
These hashing schemes and their variants need O(1) expected block transfers
for answering search queries, but they share various disadvantages when com-
pared to our structure: (i) they do not support range queries; (ii) their expected
case analysis usually assumes uniform input distributions (or input distributions
that produce uniform hash key values); and (iii) they exhibit poor worst case
performance.

The remainder of the paper is organized as follows. In Section 2, we discuss
preliminary notions and results that are used throughout the paper, define for-
mally the class of smooth probability distributions as well as discuss the ISB-Tree.
The main result of this paper, the NEFOS-tree, with the complexity analysis of
its operations is discussed in Section 3. Section 4 provides an experimental eval-
uation with synthetic and real data of our theoretical findings. We conclude in
Section 5.

2 Preliminaries

This Section briefly describes B-trees, input distributions in the context of inter-
nal memory data structures as well as the static interpolation search tree.

The B-tree The B-tree is a Θ(B)-ary tree (with the root possibly having
smaller degree) built on top of Θ(n/B) leaves. The degree of internal nodes, as
well as the number of elements in a leaf, is typically kept in the range [B/2, B]
such that a node or leaf can be stored in one disk block. All leaves are on the same
level and the tree has height O(logB n). This guarantees that a search operation
can be accomplished within O(logB n) block transfers. An insertion is performed
in O(logB n) block transfers by first searching down the tree for the relevant leaf
l. The insertion there may cause a split and the latter may propagate up the
tree. Similarly, a deletion can be performed in O(logB n) block transfers by first
searching down the tree for the relevant leaf l and then removing the deleted



element. The deletion there may cause a fusion and the latter may propagate up
the tree.

The Lazy B-tree The Lazy B-tree of [12] is a simple but non-trivial ex-
ternalization of the techniques introduced in [20]. The first level consists of an
ordinary B-tree, whereas the second one consists of buckets of size O(log2 n),
where n is approximately equal to the number of elements stored in the access
method. The following theorem provides the complexities of the Lazy B-tree:
Theorem 1. The Lazy B-Tree supports the search operation in O(logB n) worst-
case block transfers and update operations in O(1) worst-case block transfers,
provided that the update position is given.
Proof. see [12].

The ISB-tree The ISB-tree is a two-level data structure. The upper level
is a non - straightforward externalization of the Static Interpolation Search Tree
(SIST) presented in [11]. In the definition of the (f1, f2)-smooth densities [26,
19], intuitively, function f1 partitions an arbitrary subinterval [c1, c3] ⊆ [a, b] into
f1 equal parts, each of length c3−c1

f1

= O( 1
f1

); that is, f1 measures how fine is
the partitioning of an arbitrary subinterval. Function f2 guarantees that no part,
of the f1 possible, gets more probability mass than β·f2

n ; that is, f2 measures
the sparseness of any subinterval [c2 −

c3−c1

f1

, c2] ⊆ [c1, c3]. The class of (f1, f2)-

smooth distributions (for appropriate choices of f1 and f2) is a superset of both
regular and uniform classes of distributions, as well as of several non-uniform
classes [3, 11]. Actually, any probability distribution is (f1, Θ(n))-smooth, for a
suitable choice of β. The following theorem presented in [12] follows and holds
for the very broad class of (n/(log log n)1+ǫ, n1−δ)-smooth densities, where δ =
1− 1

B and includes the uniform, regular, bounded as well as several non-uniform
distributions.
Theorem 2: Suppose that the upper level of the ISB-tree is an external static
interpolation search tree with parameters R(s0) = sδ

0, I(s0) = s0/(log log s0)
1+ǫ,

where ǫ > 0, δ = 1 − 1
B , s0 = n0, n0 is the number of elements in the latest

reconstruction, and that the lower level is implemented as a forest of Lazy B-
trees. Then, the ISB-tree supports search operations in O(logB log n) expected
block transfers with high probability, where n denotes the current number of
elements, and update operations in O(1) worst-case block transfers, if the update
position is given. The worst-case update bound is O(logB n) block transfers, and
the structure occupies O(n/B) blocks.
Proof. see [12].

3 NEFOS

In the following we present the building phase of NEFOS as well as the complexity
analysis of its basic operations.

3.1 Building NEFOS

Let µ(·) random be the sequence of inserted keys and random be the sequence
of deleted keys. Let n be the total number of w-bit keys, which are organized



in block fashion. Let n1 = O(n/B) the number of these blocks. Let also n2 =
O(n1/logBlogBn) super-blocks each of which contains O(logB logBn) blocks. Let
also µ1(·) random be the sequence of keys of super-block representatives. Accord-
ing to combinatorial game of bins and balls presented in [11], we store these keys
in N = n2/lnn2 buckets, each of which contains O(lnn2) keys.

Lemma 1: If the sequence of inserted keys remains µ(·) random then the
sequence of super-block representative keys remains µ1(·) random.

Proof:See [11].

Lemma 2: Given a µ1(·) random sequence of inserted super-block represen-
tative keys and a random sequence of deleted super-block representative keys,
the load of each bucket never becomes zero and never exceeds Θ(polylog N) keys
in expected w.h.p. case.

Proof:See [11].

In (f1, f2)-smooth distributions, f1 measures how fine is the partitioning of
an arbitrary subinterval and f2 measures the sparseness of this subinterval. In
this context, any probability distribution is (f1, Θ(n))-smooth. In any realistic
distribution there are sparse subintervals of Θ(n) sparseness and dense subinter-
vals of Θ(n1−δ) sparseness, where 0 < δ < 1. For example in Figure 1, we depict
with red color a sparse subinterval and with blue color a number of consecutive
dense subintervals.

Red: A Sparse Subinterval
Blue:A number of consecutive

Dense Subintervals

Fig. 1. Sparse and dense subintervals of any arbitrary distribution

Red: Sparse Bucket of
polylogarithmic load

Blue:Dense Bucket of
polylogarithmic load

Fig. 2. Red and Blue Buckets

In the same context and according to Lemmas 1 and 2 we construct sparse and
dense buckets of polylogaritmic load. For example see the red and blue buckets
of Figure 2.

Let bucketImax the bucket with the maximum range of keys (Imax) and
bucketImin the bucket with the minimum range of keys (Imin). For any realistic
distributions Imax = Θ(n) and Imin = Θ(n1−δ), where 0 < δ < 1.



Now, we build labeled cluster nodes. Each cluster node with label i′ (where
1 ≤ i′ ≤ N ′) stores ordered buckets with keys belonging in the range [(i′ −
1)Imax, . . . , i′Imax − 1], where N ′ is the number of cluster nodes (see Figure 3).

1 2 3 N'4

Fig. 3. Red and Blue Labeled Cluster Nodes. Blue Cluster node contains at least one
dense subinterval.

NEFOS stores cluster nodes only, each of which is structured either as a Lazy
B-tree if its color is red or as an ISB-tree if its color is blue. In particular, NEFOS
is built by grouping cluster nodes having the same ancestor and organizing them
in a tree structure recursively. The innermost level of nesting (recursion) will be
characterized by having a tree in which no more than B cluster nodes share the
same direct ancestor, where B is the disk block. Thus, multiple independent trees
are imposed on the collection of nodes (see Figure 4).

1

2 B+1

LSI

B+2 B2+2 B2+B+12B+1
.

B2+B+2 2B2+B+1

Red Cluster_Node 1:
keys in range [ 0,....,I max -1]

i

Lazy B-tree of O(polylogn)
number of buckets

Blue Cluster_Node i:
keys in range [ (i-1)I max,....,iImax -1]

ISB-tree of \theta(n)
number of buckets

i

CI

CI

CI

LSI
B-tree
Index

i

Fig. 4. NEsted FOrest of load-balancing treeS in I/O model

The degree of the nodes at level i > 0 is d(i) = t(i), where t(i) indicates the
number of nodes at level i. It is defined that d(0)=B and t(0)=1. It is apparent
that t(i) = t(i−1)d(i−1), and, thus, by putting together the various components,

we can solve the recurrence and obtain d(i) = t(i) = B2i−1

for i ≥ 1. We stope
at the level where each collection contains O(N ′1/B) cluster nodes. For example



in figure 4, the root is located at level 0, thus the funout of root is exactly B.
In particular the B cluster nodes located at level 1 have labels 2, 3, . . . B + 1
respectively. At level 1, the B labeled nodes B + 2,. . . , 2B + 1 rooted at labeled
node 2, the B labeled nodes 2B + 2,. . . , 3B + 1 rooted at labeled node 3, e.t.c.
and the B labeled nodes B2 +2,. . . , B2 +B +1 rooted at labeled node B +1. At
level 2, the funout is B2, so the B2 labeled nodes B2 + B + 2,. . . , 2B2 + B + 1
rooted at labeled node B + 2 and so on.

We also equip the root cluster node with a table named Left Spine Index (LSI),
which stores pointers to the cluster nodes of the left-most spine. We organize
LSI table as a B-tree. For example in figure 4, see the red pointers beginning
from cluster node 1 towards cluster nodes with labels 2, B + 2 and B2 + B + 2
respectively.

Furthermore, each cluster node of the left-most spine is equipped with a
table named Collection Index (CI), which stores pointers to the collections of
cluster nodes presented at the same level. Cluster nodes having the same father
belong to the same collection. We also organize CI tables in block fashion. For
example in figure 4, see the blue pointers beginning from the left-most collection
towards the other collections located at the same level.

Finally, each cluster node is organized in a Lazy B-tree manner and each
collection is organized in a NEFOS manner at the next level of nesting (see the
dash lines in figure 4).
Remark 1: If we parametrize B and replace each lazy B-tree and the B-tree of
LSI structure with q*-heap machinery [27], NEFOS becomes a data structure in
RAM model with the same expected complexities w.h.p. for all operations.

3.2 Complexity Analysis

We will focus first on space and then on time complexity of NEFOS’ basic oper-
ations.

Space Complexity Analysis The double exponentially increasing fanout guar-
antees the following lemma:
Lemma 3: The height (or the number of levels) of NEFOS is O(log logB n) in
the worst case.
Proof: It is obvious if we solve for i the equation B2i−1

= O(N ′1/B).
Now, since the innermost level of nesting (recursion) is characterized by having

a tree in which no more than B cluster nodes share the same direct ancestor, the
lemma 4 follows:
Lemma 4: The maximum number of possible nestings in NEFOS structure is
O(logB logB n) in the worst case.
Proof: It is obvious that in NEFOS structure of jth nested level, the last col-
lections contain O(N ′1/Bj

) cluster nodes. Since the innermost level of nesting
(recursion) is characterized by having a tree in which no more than B clus-

ter nodes share the same direct ancestor, it holds that O(N ′1/Bj

) = B, meaning
that j = O(logB logB N ′) or j = O(logB logB n).

Finally, the sizes of CI and LSI tables are described by the following lemma:



Lemma 5: The maximum size of the CI and LSI tables is O(n1/B

B ) and O( log logB n
B )

in worst-case respectively.
Proof: Since the maximum number (O(n1/B)) of cluster nodes appears at last
level of the basic (non-nested) NEFOS structure, the length of CI is O(n1/B).

Since, CI has been organized in a block fashion,the O(n1/B

B ) space complexity
follows. The length of LSI table depends on the height of NEFOS. Thus according
to lemma3, this length becomes O(log logB n). Since, LSI has been organized in

a block fashion (according to B-tree),the O( log logB n
B ) space complexity follows.

Each cluster node appears in O(logB logB n) nesting levels in the worst case.
As a result each bucket appears in O(logB logB n) nesting levels in the worst
case and as a result each super-block appears in O(logB logB n) nesting levels in
the worst case. Since, each super-block contains O(logBlogBn) blocks, we have
O(n/B) blocks in total and the theorem foloows:

Theorem 3: The whole space of NEFOS remains linear.

Query Processing, Data Insertion, Data Deletion Assume we are located
at root cluster node and seek a key k. First, we find the range where k belongs
in. Let say k ∈ [(j −1) Imax, jImax −1]. The latter means that we have to search
for cluster node j. The first step of our algorithm is to find the level where the
desired cluster node j is located. For this purpose, we organize the cluster node
labels pointed by the LSI table in a B-tree manner (see Figure 4). Since, according

to lemma 5, the maximum size of the LSI table is O( log logB n
B ) in worst-case, the

theorem 4 follows.
Theorem 4:The level where the desired cluster node j is located can be

found out in O(logB( log logB n
B )) I/Os.

Let say that cluster node j is located at the i-th level. We follow the i-th
pointer of the LSI table located at root cluster node so as to reach the leftmost
cluster node x of level i. Then, we compute the collection in which the clus-
ter node j belongs. Since the number of collections at level i equals the number
of cluster nodes located at level (i − 1), we divide the distance between j and

x by the factor t(i − 1). Let m (in particular m =
⌈

j−x+1
t(i−1)

⌉

) be the result of

this division. The latter means that we additionally need O(1) I/Os to follow the
(m + 1)-th pointer of the CI table so as to reach the desired collection. Since the
collection indicated by the CI[m+1] pointer is organized in the same way at the
next nesting level, we continue this process recursively.

Generally speaking, we need O(logB(
log logB n

B )) + O(1) I/Os for locating the
desired collection and we have to continue this process recursively for all nesting
levels. Since the maximum number of nesting levels is O(logB logB n) in the worst
case (according to lemma 4), the whole searching process requires T1(n) I/Os to
locate the target cluster node, where:

T1(n) =

logB logB n
∑

i=1

logB(
log logB n

1

Bi−1

B
) (1)

from which we get:
T1(n) < O(logB log n)



Then, we have to locate the target bucket by searching the respective Lazy B-tree
or ISB-tree, requiring T2(n) I/Os.

If the located cluster node is red, then its load is polylogarithmic and the lazy
B-tree index is sufficient to give us the desired complexity. If it’s blue then its
load may be Θ(n), and the question is how we can compute the new maximum
range of keys there. Let say it Imax(1) (see the Figure 5).

1 3 N'

Imax Imax Imax Imax Imax

Imax(1)

ISB-tree
ISB-tree

2 4

Fig. 5. Blue cluster nodes are structured in NEFOS manner with new range Imax(1)

Since each blue cluster node contains at least one dense subinterval of Θ(n1−δ)
sparseness, where 0 < δ < 1, for the new range Imax(1) the following holds:

Imax(1) = Imax − f(n) · Θ(n1−δ), where the number of dense subintervals
appearing inside a blue cluster node is a function of n.

By setting Imax(1) = Θ(n1−δ), we get the following:

Θ(n1−δ) = Θ(n)−f(n)·Θ(n1−δ). The latter means that: f(n) = Θ(n)−Θ(n1−δ)
Θ(n1−δ)

or f(n) = Θ(nδ). The property 1 follows:
Property 1:The number of consecutive dense subintervals is f(n) = Θ(nδ).
So, now it’s time to formally define what we mean with the term any realistic

distribution.
Definition 1: Let µ(·) be any random distribution in which there are sparse

subintervals of Θ(n) sparseness and dense consecutive subintervals of Θ(n1−δ)
sparseness, where 0 < δ < 1. If the number of consecutive dense subintervals
satisfies the property 1, then the µ(·) random distribution is called realistic dis-

tribution.
We have to denote here that, the most known non-smooth (bad) distribu-

tions like skew, zipfian, powlaw, beta e.t.c. satisfy the property 1 for many real
applications, thus would be called realistic for a huge variety of applications.

In other words, for any realistic distribution, each blue cluster node in NEFOS
structure satisfies the smooth property.

So, if the located cluster node is red, then its load is polylogarithmic and the
Lazy B-tree index requires a logarithmic number of I/Os:
T2(N) = O(logB(poly log n)) or T2(N) = O(logB log n) I/Os or block-transfers.

If the located cluster node is blue then its load may be Θ(n) in worst-case.
Moreover, it’s obvious that for any realistic distribution, each blue cluster node
satisfies the smoothness property. For this reason, we organize each blue clus-
ter node as an ISB-tree. In this case, T2(n) becomes as follows:



T2(n) = O(logB log Θ(n)) (2)

As a result, the total processing time requires T (n) = T1(n)+T2(n) I/Os and
the theorem follows:

Theorem 5: Exact-match queries in the NEFOS structure require O(logB log n)
I/Os for any realistic input distribution.

Having located the target cluster node for key kℓ and exploiting the order of
keys in each bucket, range queries of the form [kℓ, kr] require an O(logB log n +
|A| /B) I/Os, where |A| is the number of cluster nodes between the buckets re-
sponsible for kℓ, kr respectively that are accessed in a block manner. The theorem
follows.
Theorem 6: Range queries of the form [kℓ, kr] in the NEFOS structure require
O(logB log n + |A| /B) I/Os for any realistic input distribution, where |A| is the
answer size.

Finally, provided that the position of update is given, meaning that we have
already located the target cluster node, it remains to insert/delete the key inside
the cluster node. Since, the latter is structured either as a Lazy-B tree or as an
ISB-tree, the theorem 7 follows:

Theorem 7: Update queries in NEFOS require O(1) I/Os for rebalancing oper-
ations in worst-case, provided that the update position is given.

4 Experimental Evaluation

In this section, we investigate the practical merits of the NEFOS structure. Our
prime concern is to (merely) investigate the practical difference of the asymptotic

complexities (in block transfers) of search and rebalancing operations between
the NEFOS structure, the ISB-tree and a cache-aware B-tree. Although there
are several cache-aware B-tree variants, all of them exhibit the same asymptotic
complexities in block transfers except for lazy B-tree which guarantees constant
number of block transfers for update operations. Since lazy B-tree has been in-
corporated into ISB-tree in order to speedup the update operations, we compare
the performance of NEFOS with the ISB-tree and a simple variant of the cache-
aware B-tree. Moreover, we do not compare the performance of our rebalancing
operations (after an update) with hashing schemes and their variants, since the
expected-case analysis of such schemes usually assumes uniform input distribu-
tions (or input distributions that produce uniform hash key values), and hence
they exhibit poor worst-case performance for update operations. In our experi-
mental study, we have considered both synthetic and real-world data.

4.1 Synthetic data

For evaluation purposes we used the Java NEFOS-simulator (source code of
NEFOS index is available at http://www.ionio.gr/∼sioutas/New-Software.htm).
The NEFOS-simulator is extremely efficient delivering > 100, 000 cluster nodes
in a single computer system, using 32-bit JVM 1.6 and 1.5 GB RAM and full
GUI support. When 64-bit JVM 1.6 and 5 RAM is utilized the NEFOS-simulator



delivers > 500, 000 cluster nodes and full GUI support in a single computer sys-
tem. We have conducted an experimental study making the customary assump-
tion that the page size is 4096 bytes, the length of each key is 8 bytes, and the
length of each pointer is 4 bytes. Consequently, each block contains B = 341
elements. We considered data sets of size n0 ∈ [106, 1012] elements generated by
a variety of smooth distributions, namely uniform, regular, normal and Gaus-
sian and non-smooth distributions, namely beta and pow-law. We compared the
implementation of NEFOS, with the ISB-tree and that of a B-tree on the same
data sets. Our main concern was to measure the performance, in simulated block
transfers (I/Os), of the search and update operations.
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Fig. 6. Search performance for regular distributions (left) and Gaussian distributions
(right).
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Fig. 7. Search performance for non-smooth beta (left) and powlaw distributions (right).

The experimental results regarding the search operations are reported in Fig. 6
and 7. The sequence σ of search operations had length equal to its corresponding
data set and the reported values are averages over the whole sequence. Our
experiments revealed that the expected number of block transfers in NEFOS
structure remains constant even for gigantic data sets (Terabytes - TB).

Regarding the number of block transfers required for rebalancing after an
update operation to the data structure, we again considered the above values
of n0 ∈ [106, 1012] for our initial data sets upon which we performed update
sequences of length n0/2 and 2n0. The data structure is reconstructed every n0
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Fig. 8. Block transfers of rebalancing operations after an update.

operations. Our experimental results are reported in Fig. 8. The values represent
worst-case block transfers over the update sequence. We observe that the number
of rebalancing operations in NEFOS structure is independent of the distribution.

4.2 Real-world Spatial Data
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Fig. 9. Search performance for MBR’s x-projections of [Tiger1] (left) and [Tiger2]
(right).

In this section, we deploy one-dimensional data taken from a real-world spatial
dataset “LA rivers and railways” [Tiger1] and “LA streets” [Tiger2], containing
128971 and 131461 M inimum Bounded Rectangles (MBRs), respectively; see
[23].

The one-dimensional data are taken by the x- and y-projections of MRBs and
the values in each axis are normalized in [0,10000]. For all experiments, the disk
page size is set to 512 bytes, the length of each key to 8 bytes, and the length
of each pointer to 4 bytes. Consequently, each block contains B = 42 elements.
We use a relatively small page size so that the number of nodes in an index
simulates realistic situations, where the data set cardinality is higher. A similar
methodology was also used in [4].

Fig. 9 and Fig. 10 depict the efficiency of NEFOS structure on searching
for real spatial one-dimensional data. In particular, in Fig. 9 we measured the
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Fig. 10. Search performance for MBRs’ y-projections of [Tiger1] (left) and [Tiger2]
(right).
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Fig. 11. Performance of rebalancing operations after an update for MBRs’ x-projections
of [Tiger1] (left) and [Tiger2] (right).

number of I/Os required for search operations during the insertion of a total of
2 × 128971 = 257942 and of 2 × 131461 = 262922 x-projections from [Tiger1]
and [Tiger2], respectively. Similarly, in Fig. 10 we measured the number of I/Os
required for search operations during the insertion of a total of 2 × 128971 =
257942 and of 2 × 131461 = 262922 y-projections from [Tiger1] and [Tiger2],
respectively.

Fig. 11 and Fig. 12 depict the efficiency of NEFOS structure on updating real
spatial one-dimensional data. In Fig. 11 we measured the number of I/Os required
for the rebalancing operations during insertions of a total of 2×128971 = 257942
x-projections and of 2×131461 = 262922 x-projections from [Tiger1] & [Tiger2],
respectively. In the same way, in Fig. 12 we measured the number of I/Os required
for rebalancing operations during insertions of 2×128971 = 257942 y-projections
and of 2 × 131461 = 262922 y-projections from [Tiger1] & [Tiger2], respectively.

The above experiments show that NEFOS has approximately the same be-
haviour with ISB-tree requiring no more than 2 I/Os on average for both searching
and rebalancing operations. This stems from the fact that the MBRs’ projections
from the data sets [Tiger1] & [Tiger2] follow an almost uniform distribution, due
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Fig. 12. Performance of rebalancing operations after an update for MBRs’ y-projections
of [Tiger1] (left) and [Tiger2] (right).

to the almost uniform decomposition of spatial maps. Better performance in
[Tiger 2] is due to the fact that this is a dense spatial map and hence the derived
one-dimensional data produce densely populated elements.

As a final remark, we note that there are applications with uniform key sizes
larger than 8 bytes, resulting in a smaller value of B. The main example of such
applications involve manipulation of strings. In this case, the size of the block
may be as small as 2. Consequently, in such cases the NEFOS structure exhibits
a much better performance.

5 Conclusions

We presented NEFOS (NEsted FOrest of balanced treeS), the first cache-aware
indexing scheme, which supports expected w.h.p. sub-logarithmic range query
processing for any (unknown) realistic input distribution. Moreover, NEFOS is
the first concrete access method, which works for both I/O and RAM model,
avoiding any kind of transformation or adaptation. The innovation of our solution
was also verified by an accompanying experimental study.

References

1. L. Arge, M. de Berg, H.J. Haverkort, K. Yi: The Priority R-Tree: A Practically
Efficient and Worst-Case Optimal R-Tree. SIGMOD Conf. ,2004: 347-358

2. A. Aggarwal and J.S. Vitter. The Input/Output Complexity of Sorting and Related
Problems. C. ACM, 31(9):1116-1127, 1988.

3. A. Andersson and C. Mattson. Dynamic Interpolation Search in o(log log n) Time.
In Proc. ICALP’93. LNCS 700 (Springer-Verlag, 1993), pp. 15-27.

4. N. Beckmann, H. Krigel, R. Schneider, B. Seeger. The R*-tree: An Efficient and
Robust Access Method for Points and Rectangles. SIGMOD, 1990.

5. R. Bayer and E. McCreight. Organization of large ordered indexes. Acta Informat-

ica, 1:173-189, 1972.
6. J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.

C. ACM, 51:107-113, 2008.
7. P.Dietz and R.Raman. A constant update time finger search tree. Information Pro-

cessing Letters, 52:147-154, 1994.



8. R. Fagin, J. Nievergelt, N. Pippinger, H.R. Strong. Extendible Hashing-A fast access
method for dynamic files, ACM Trans. Database Systems, 4(3):315-344, 1979.

9. P. Ferragina and R. Grossi. The String B-tree: A New Data Structure for String
Search in External Memory and Its Applications. Journal of the ACM, 46(2):236-
280, 1999.

10. E. Fox, Q. Chen, A. Daoud. Practical Minimal Perfect Hash Functions for Large
Databases. C. ACM, 35(5):105-121, 1992.

11. A. Kaporis, C. Makris, S. Sioutas, A. Tsakalidis, K. Tsichlas, and C. Zaroliagis.
Improved Bounds for Finger Search on a RAM. Algorithms, Vol. 2832:325-336,
2003.

12. A. Kaporis, C. Makris, G. Mavritsakis, S. Sioutas, A. Tsakalidis, K. Tsichlas, and
C. Zaroliagis. ISB-Tree: A New Indexing Scheme with Efficient Expected Behaviour.
Algorithms and Computation, Vol. 3827:318-327, 2005.

13. D.E. Knuth. Deletions that preserve randomness. IEEE Trans. Softw. Eng., 3:351-
359, 1977.

14. P. Lehman and S. Bing Yao. Efficient Locking for Concurrent Operations on B-
Trees. ACM Trans. Database Systems, 6(4):650-670, 1981.

15. C. Levcopoulos and M.H. Overmars: Balanced Search Tree with O(1) Worst-case
Update Time. Acta Informatica, 26:269-277, 1988.

16. W. Litwin. Linear Hashing: A new tool for files and tables addressing. International

Conference on Very Large Databases, 6:212-223, 1980.
17. W. Litwin and D. Lomet. A New Method for Fast Data Searches with Keys. IEEE

Software, 4(2):16-24, 1987.
18. Y. Manolopoulos, Y. Theodoridis, V. Tsotras. Advanced Database Indexing. Kluwer

Academic Publishers, 2000.
19. K. Mehlhorn and A. Tsakalidis. Dynamic Interpolation Search. Journal of the ACM,

40(3):621-634, 1993.
20. R.Raman. Eliminating Amortization: On Data Structures with Guaranteed Re-

sponse Time. PhD Thesis, Dept. of Computer Science, University of Rochester,
New York; Technical Report TR-439, 1992.

21. B. Seeger and P.A. Larson. Multi-Disk B-trees. In Proc. SIGMOD Conference 1991,
pp. 436-445.

22. V. Srinivasan and M.J. Carey. Performance of B+ Tree Concurrency Algorithms.
VLDB Journal, 2(4):361-406, 1993.

23. Y. Theodoridis. The R-tree Portal. http://www.rtreeportal.org, 2003; [Tiger1]
and [Tiger2] data sets in http://www.rtreeportal.org/spatial.html.

24. J.S. Vitter. External memory algorithms and data structures: dealing with massive
data. ACM Computing Surveys 33(2):209-271, 2001.

25. J.S. Vitter and E.A.M. Shriver. Optimal Algorithms for Parallel Memory I: Two-
Level Memories. Algorithmica, 12(2-3):110-147, 1994.

26. D.E. Willard. Searching Unindexed and Nonuniformly Generated Files in log log N

Time. SIAM Journal of Computing, 14(4):1013-1029, 1985.
27. D.E. Willard. Examining Computational Geometry, van Emde Boas Trees, and

Hashing from the Perspective of the Fusion Tree. SIAM Journal of Computing,
29(3):1030-1049, 2000.


